
COP 4710: SQL Part 2 Page 1 Mark Llewellyn ©

COP 4710: Database Systems
Spring 2006

Chapter 5 – Introduction To SQL – Part 2

COP 4710: Database Systems
Spring 2006

Chapter 5 – Introduction To SQL – Part 2

School of Electrical Engineering and Computer Science
University of Central Florida

Instructor : Mark Llewellyn
markl@cs.ucf.edu
CSB 242, 823-2790
http://www.cs.ucf.edu/courses/cop4710/spr2006

COP 4710: SQL Part 2 Page 2 Mark Llewellyn ©

An Example Database

COP 4710: SQL Part 2 Page 3 Mark Llewellyn ©

Advanced SELECT Queries

• One of the most important advantages of SQL is its ability to
produce complex free-form queries.

• The logical operators that were illustrated in the last set of
notes work just as well in the query environment.

• In addition, SQL provides useful functions that count, find
minimum and maximum values, calculate averages, and so
on.

• Even better, SQL allows the user to limit queries to only
those entries having no duplicates or entries whose duplicates
may be grouped.

• We’ll illustrate several of these features over the next few
pages.

COP 4710: SQL Part 2 Page 4 Mark Llewellyn ©

Ordering A Listing
• The ORDER BY clause is especially useful if the listing order is

important to you. T

• The syntax is:

• If the ordering column contains nulls, they are either listed first or last
depending on the RDBMS.

• The ORDER BY clause must always be listed last in the SELECT
command sequence.

• Although you have the option of specifying the ordering type, either
ascending or descending – the default order is ascending.

SELECT columnlist

FROM tablelist

[WHERE conditionlist]

[ORDER BY columnlist [ASC | DESC]] ;

COP 4710: SQL Part 2 Page 5 Mark Llewellyn ©

Ordering A Listing (cont.)

• The query shown below lists the contents of the PRODUCT
table listed by P_PRICE in ascending order:

SELECT

P_CODE, P_DESCRIPT,

P_INDATE, P_PRICE

FROM PRODUCT

ORDER BY P_PRICE;

COP 4710: SQL Part 2 Page 6 Mark Llewellyn ©

Ordering A Listing (cont.)

• The query shown below lists the contents of the PRODUCT
table listed by P_PRICE in descending order:

SELECT

P_CODE, P_DESCRIPT,

P_INDATE, P_PRICE

FROM PRODUCT

ORDER BY P_PRICE DESC;

COP 4710: SQL Part 2 Page 7 Mark Llewellyn ©

Cascading Order Sequences
• Ordered listings are used frequently. For example, suppose

you want to create a phone directory of employees. It would
be helpful if you could produce an ordered sequence (last
name, first name, middle initial) in three stages:

1. ORDER BY last name.

2. Within last names, ORDER BY first name.

3. Within the order created in Step 2, ORDER BY middle initial.

• A multi-level ordered sequence is called a cascading order
sequence, and is easily created by listing several attributes,
separated by commas, after the ORDER BY clause.

• This concept is illustrated in the next couple of slides.

COP 4710: SQL Part 2 Page 8 Mark Llewellyn ©

Cascading Order Sequences (cont.)

Employee Table

COP 4710: SQL Part 2 Page 9 Mark Llewellyn ©

Cascading Order Sequences (cont.)

• To create the phonebook type ordering from the EMPLOYEE table, we
can execute the following SQL query:

• This query would produce the result shown on the next slide.

SELECT EMP_LNAME, EMP_FNAME, EMP_INITIAL, EMP_AREACODE, EMP_PHONE

FROM EMPLOYEE

ORDER BY EMP_LNAME, EMP_FNAME, EMP_INITIAL;

COP 4710: SQL Part 2 Page 10 Mark Llewellyn ©

Cascading Order Sequences (cont.)

Employee Table – Sorted by LastName, FirstName, MiddleInitial

COP 4710: SQL Part 2 Page 11 Mark Llewellyn ©

Additional Uses of the ORDER BY Clause

• You can use the ORDER BY clause in conjunction with other SQL
commands as well.

• For example, note the use of restrictions on date and price in the
following command sequence:

• The result of this query is shown on the next slide:

SELECT P_DESCRIPT, V_CODE, P_INDATE, P_PRICE

FROM PRODUCT

WHERE P_INDATE < ’21-Jan-2004’ AND P_PRICE <= 50.00

ORDER BY V_CODE, P_PRICE DESC;

COP 4710: SQL Part 2 Page 12 Mark Llewellyn ©

Additional Uses of the ORDER BY Clause (cont.)

COP 4710: SQL Part 2 Page 13 Mark Llewellyn ©

Listing Unique Values
• How many different vendors are currently represented in the PRODUCT

table? A simple listing (SELECT command) is not very useful in
answering this query, particularly if the table contained several thousand
rows and we would have to manually sift out the vendor codes.

• Fortunately, SQL’s DISTINCT clause is designed to produce a list of
only those values that are different from one another.

• For example, the command:

will yield on the different (distinct)

vendor codes (V_CODE) that are

encountered in the PRODUCT table.

SELECT DISTINCT V_CODE

FROM PRODUCT;

Oracle puts
the null
V_CODE at
the bottom of
the list while
Access will
put it at the
top. You can,
of course,
using the
ORDER BY
clause.

COP 4710: SQL Part 2 Page 14 Mark Llewellyn ©

Grouping Results
• Frequency distributions can be created quickly and easily using the

GROUP BY clause within the SELECT statement.

• The syntax is:

• The GROUP BY clause is generally used when you have attribute
columns combined with aggregate functions in the SELECT statement.

• For example, to determine the minimum price for each sales code, use the
following statement shown on the next page.

SELECT columnlist

FROM tablelist

[WHERE conditionlist]

[GROUP BY columnlist]

[HAVING condtionlist]

[ORDER BY columnlist [ASC | DESC]] ;

COP 4710: SQL Part 2 Page 15 Mark Llewellyn ©

Grouping Results (cont.)

• The query is: SELECT P_SALECODE, MIN(P_PRICE)

FROM PRODUCT

GROUP BY P_SALECODE;

COP 4710: SQL Part 2 Page 16 Mark Llewellyn ©

Grouping Results (cont.)

• When using the GROUP BY clause with a SELECT statement, the
following rules must be observed:

1. The SELECT’s columnlist must include a combination of column names and
aggregate functions.

2. The GROUP BY clause’s columnlist must include all non-aggregate function
columns specified in the SELECT’s columnlist. If required, you could also
group by any aggregate function columns that appear in the SELECT’s
columnlist.

3. The GROUP BY clause columnlist can include any column from the tables in
the FROM clause of the SELECT statement, even if they do not appear in the
SELECT’s columnlist.

COP 4710: SQL Part 2 Page 17 Mark Llewellyn ©

The GROUP BY Feature’s HAVING Clause
• A particularly useful extension of the GROUP BY clause is the HAVING

clause.

• Basically, HAVING operates like the WHERE clause in the SELECT
statement. However, the WHERE clause applies to columns and
expressions for individual rows, while the HAVING clause is applied to
the output of a GROUP BY operation.

• For example, suppose you want to generate a listing of the number of
products in the inventory supplied by each vendor, but you want to limit
the listing to the products whose prices average below $10.00. The first
part of this requirement is satisfied with the help of the GROUP BY
clause, the second part of the requirement will be accomplished with the
HAVING clause.

• The complete query and results are shown on the next page.

COP 4710: SQL Part 2 Page 18 Mark Llewellyn ©

The GROUP BY Feature’s HAVING Clause
(cont.)

The query

The results

COP 4710: SQL Part 2 Page 19 Mark Llewellyn ©

Virtual Tables: Creating Views

• Recall that the output of a relational operator (like SELECT in SQL) is
another relations (or table).

• Using our sample database as an example, suppose that at the end of each
business day, we would like to get a list of all products to reorder, which
is the set of all products whose quantity on hand is less than some
threshold value (minimum quantity).

• Rather than typing the same query at the end of every day, wouldn’t it be
better to permanently save that query in the database?

• To do this is the function of a relational view. In SQL a view is a table
based on a SELECT query. That query can contain columns, computed
columns, aliases, and aggregate functions from one or more tables.

• The tables on which the view is based are called base tables.

• Views are created in SQL using the CREATE VIEW command. Views
are not available in MySQL 4.1, but will be a new feature in MySQL 5.0.

COP 4710: SQL Part 2 Page 20 Mark Llewellyn ©

Virtual Tables: Creating Views (cont.)

• The syntax of the CREATE VIEW command is:

• The CREATE VIEW statement is a DDL command that stores the
subquery specification, i.e., the SELECT statement used to generate the
virtual table in the data dictionary.

• An example:

• Note: The CREATE VIEW command is not directly supported in
Access. To create a view in Access, you just need to create an SQL
query and then save it.

CREATE VIEW viewname AS SELECT query

CREATE VIEW PRODUCT_3 AS

SELECT P_DESCRIPT, P_ONHAND, P_PRICE

FROM PRODUCT

WHERE P_PRICE > 50.00;

COP 4710: SQL Part 2 Page 21 Mark Llewellyn ©

Virtual Tables: Creating Views (cont.)
• A relational view has several special characteristics:

1. You can use the name of a view anywhere a table name is expected in an
SQL statement.

2. Views are dynamically updated. That is, the view is re-created on demand
each time it is invoked.

3. Views provide a level of security in the database because the view can restrict
users to only specified columns and specified rows in a table.

4. Views may also be used as the basis for reports. The view definition shown
below creates a summary of total product cost and quantity on hand statistics
grouped by vendor:

CREATE VIEW SUMPRDXVEN AS

SELECT V_CODE, SUM(P_ONHAND*P_PRICE) AS TOTCOST,

MAX(P_ONHAND) AS MAXQTY, MIN(P_OHAND) AS MINQTY,

AVG(P_ONHAND) AS AVGQTY

FROM PRODUCT

GROUP BY V_CODE;

COP 4710: SQL Part 2 Page 22 Mark Llewellyn ©

Joining Database Tables
• The ability to combine (join) tables on common attributes is perhaps the

most important distinction between a relational database and other types
of databases.

• In SQL, a join is performed whenever data is retrieved from more than
one table at a time.

• To join tables, you simply enumerate the tables in the FROM clause of
the SELECT statement. The RDBMS will create the Cartesian product of
every table specified in the FROM clause.

• To effect a natural join, you must specify the linking on the common
attributes in the WHERE clause. This is called the join condition.

• The join condition is generally composed of an equality comparison
between the foreign key and the primary key in the related tables.

COP 4710: SQL Part 2 Page 23 Mark Llewellyn ©

Joining Database Tables (cont.)

• Suppose we want to join the VENDOR and PRODUCT tables.
V_CODE is the foreign key in the PRODUCT table and the primary key
in the VENDOR table, the join condition occurs on this attribute.

SELECT PRODUCT.P_DESCRIPT, PRODUCT.P_PRICE, VENDOR.V_NAME

VENDOR.V_CONTACT, VENDOR.V_AREACODE, VENDOR.V_PHONE

FROM PRODUCT, VENDOR

WHERE PRODUCT.V_CODE = VENDOR.V_CODE;

Qualified names
are normally only
required where
the same
attribute appears
in more than one
of the joined
relations.

COP 4710: SQL Part 2 Page 24 Mark Llewellyn ©

Joining Database Tables (cont.)

• If you do not specify a join condition in the WHERE clause, a Cartesian
product results. Using our sample database, the PRODUCT table
contains 16 tuples (rows) and the VENDOR table contains 11 tuples,
which results in a Cartesian product that contains 16 × 11 = 176 tuples.
Most of these tuples (as you can see from the proper result on the
previous page) are garbage!

• When joining three or more tables, you need to specify a join condition
for each pair of tables. The number of join conditions will always be N-1
where N is the number of tables listed in the FROM clause.

• Be careful not to create circular join conditions. For example, if table A
is related to table B, table B is related to table C, and table C is also
related to table A, create only two join conditions: join A with B and B
with C. Do not join C with A!

COP 4710: SQL Part 2 Page 25 Mark Llewellyn ©

Recursive Joins
• An alias can be used to identify the source table from which data is taken

for a query. For example:

• An alias is especially useful when a table must be joined with itself,
called a recursive join.

• For example, using the EMPLOYEE table we would like to generate a
list of all employees along with the name of their manager. Without
using an alias this query is not possible, since even qualified attribute
names are not unique.

SELECT P_DESCRIPT, P_PRICE, V_NAME, V_CONTACT, V_AREACODE, V_PHONE

FROM PRODUCT P, VENDOR V

WHERE P.V_CODE = V.V_CODE

ORDER BY P_PRICE;

Creating an alias. In
Access add the keyword
AS before the alias.

COP 4710: SQL Part 2 Page 26 Mark Llewellyn ©

Recursive Joins (cont.)

Creating an alias using
Access notation.

COP 4710: SQL Part 2 Page 27 Mark Llewellyn ©

Outer Joins
• The query results shown on page 23 resulted from the natural join of the

PRODUCT and VENDOR tables. Notice that there are 14 product rows
listed in this output. If you compare these results with the PRODUCT
table itself (see SQL part 1 notes page 46) you will notice that there are
two missing products. Why? The reason is that the two missing products
have null values in the V_CODE attribute in the PRODUCT table.
Because there is no matching null “value” in the VENDOR table’s
V_CODE attribute, they do not appear in the final output based on the
join.

• To include such rows in the final join output, we’ll need to use an outer
join.

• Recall that there are three basic types of outer joins, left outer joins, right
outer joins, and full outer joins. Given tables A and B, A left outer join B
gives all matching rows (on the join condition) plus all unmatched rows
in A. A right outer join B gives all matching rows (on the join condition)
plus all unmatched rows in B. We’ll look at full outer joins later.

COP 4710: SQL Part 2 Page 28 Mark Llewellyn ©

Left Outer Joins
• To include the null valued V_CODE

tuples from the PRODUCT table in the
final output, we’ll need to issue the
following query:

Note: The word “outer” does not appear in
the query. It is simply either a left join or a
right join, the outer is implied.

COP 4710: SQL Part 2 Page 29 Mark Llewellyn ©

Left Outer Joins (cont.)

Results shows all rows from VENDOR with all
matching rows from PRODUCT (left outer join).

COP 4710: SQL Part 2 Page 30 Mark Llewellyn ©

Right Outer Joins
• The VENDOR table is shown below. Notice that there are rows in

this table in which the V_CODE does not match any of the V_CODE
values in the PRODUCT table.

These
vendors do
not appear in
the
PRODUCT
table

COP 4710: SQL Part 2 Page 31 Mark Llewellyn ©

Right Outer Joins (cont.)

The right outer join shows all PRODUCT
rows with all matching VENDOR rows.

COP 4710: SQL Part 2 Page 32 Mark Llewellyn ©

Right Outer Joins (cont.)

Result shows all rows from PRODUCT
with all matching rows from VENDOR

(right outer join)

COP 4710: SQL Part 2 Page 33 Mark Llewellyn ©

Relational Set Operators
• Recall that relational algebra is set-oriented and includes many set

operators such as union, intersection, and set difference. Recall too, that
the terms, sets, tables and relations are interchangeable in the relational
world.

• As with pure relational algebra, the set operators only work with union-
compatible relations. In SQL, this means that the names of the attributes
must be the same and their data types must be identical. This is an area
where different RDBMSs vary widely in what is meant by union-
compatible. For example, some RDBMSs will consider the data types
VARCHAR(35) and VARCHAR(15) compatible because, although they
have different length, the underlying base type is the same. Other
RDBMSs will not consider these two data types as compatible. You’ll
need to experiment with your RDBMS to see what is compatible and
what isn’t.

COP 4710: SQL Part 2 Page 34 Mark Llewellyn ©

Union Operator
• Suppose that our company has bought another company and management

wants to make sure that the acquired company’s customer list is properly
merged with the existing company customer list. Since it is quite
possible that some customers have purchased from both companies, the
two lists may contain common customers. Management does not want
any duplicates in the customer list.

• The SQL UNION query automatically removes duplicate rows from the
operand relations. If you wish to include duplicate rows in the result use
the UNION ALL command.

• The syntax of a UNION query is:

• Basically, the UNION statement combines the output of two SELECT
queries. Remember that the output of the two SELECT queries must be
union compatible.

• To illustrate the UNION query, let’s combine our original customer list
with the new customer list as shown on the next couple of pages.

query UNION query

COP 4710: SQL Part 2 Page 35 Mark Llewellyn ©

Union Operator (cont.)

COP 4710: SQL Part 2 Page 36 Mark Llewellyn ©

Union Operator (cont.)

The result of the
UNION of the
CUSTOMER and
CUSTOMER_2
tables.

Customer names
Dunne and
Olowski appear in
both original
tables and thus
appear only once
in the union result.

COP 4710: SQL Part 2 Page 37 Mark Llewellyn ©

Union ALL Operator

The result of the
UNION ALLof the
CUSTOMER and
CUSTOMER_2
tables.

Customer names
Dunne and
Olowski appear
twice since
duplicates are not
removed in this
form of UNION.

COP 4710: SQL Part 2 Page 38 Mark Llewellyn ©

Intersect Operator
• The syntax of an INTERSECT query is:

• Access does not support the INTERSECT statement. To effect an
intersection in Access you need to use the IN operator.

query INTERESCT query

COP 4710: SQL Part 2 Page 39 Mark Llewellyn ©

Intersect Operator

Results of intersection of
the two tables shown
above (query on the
previous page).

COP 4710: SQL Part 2 Page 40 Mark Llewellyn ©

Set Difference Operator
• The syntax of a (set difference) MINUS query is:

• Access does not support the MINUS statement. To effect a set difference
in Access you need to use the NOT IN operator.

• Most RDBMSs name the MINUS operation EXCEPT.

query MINUS query

COP 4710: SQL Part 2 Page 41 Mark Llewellyn ©

Set Difference Operator (cont.)

Results of the set
difference query from

the previous page

COP 4710: SQL Part 2 Page 42 Mark Llewellyn ©

SQL Join Operations

• The SQL join operations merge rows from two tables and
returns the rows that:

1. Have common values in common columns (natural join) or,

2. Meet a given join condition (equality or inequality) or,

3. Have common values in common columns or have no matching
values (outer join).

• We’ve already examined the basic form of an SQL join
which occurs when two tables are listed in the FROM clause
and the WHERE clause specifies the join condition.

• An example of this basic form of the join is shown on the
next page.

COP 4710: SQL Part 2 Page 43 Mark Llewellyn ©

SQL Join Operations (cont.)

• The FROM clause indicates which tables are to be joined. If
three or more tables are specified, the join operation takes
place two tables at a time, starting from left to right.

• The join condition is specified in the WHERE clause. In the
example, a natural join is effected on the attribute V_CODE.

• The SQL join syntax shown above is sometimes referred to
as an “old-style” join.

• The tables on pages 55 and 56, summarize the SQL join
operations.

SELECT P_CODE, P_DESCRIPT, P_PRICE, V_NAME

FROM PRODUCT, VENDOR

WHERE PRODUCT.V_CODE = VENDOR.V_CODE;

COP 4710: SQL Part 2 Page 44 Mark Llewellyn ©

SQL Cross Join Operation

• A cross join in SQL is equivalent to a Cartesian
product in standard relational algebra. The cross
join syntax is:

SELECT column-list

FROM table1, table2;

SELECT column-list

FROM table1 CROSS JOIN table2;

old style syntax

new style syntax

COP 4710: SQL Part 2 Page 45 Mark Llewellyn ©

SQL Natural Join Operation

• The natural join syntax is:

• The natural join will perform the following tasks:

– Determine the common attribute(s) by looking for
attributes with identical names and compatible data types.

– Select only the rows with common values in the common
attribute(s).

– If there are no common attributes, return the cross join of
the two tables.

SELECT column-list

FROM table1 NATURAL JOIN table2;
new style syntax

COP 4710: SQL Part 2 Page 46 Mark Llewellyn ©

SQL Natural Join Operation (cont.)

• The syntax for the old-style natural join is:

• One important difference between the natural join
and the “old-style” syntax is that the natural join
does not require the use of a table qualifier for the
common attributes. The two SELECT statements
shown on the next page are equivalent.

SELECT column-list

FROM table1, table2

WHERE table1.C1 = table2.C2;

old style syntax

COP 4710: SQL Part 2 Page 47 Mark Llewellyn ©

SQL Natural Join Operation (cont.)

SELECT CUS_NUM, CUS_LNAME,

INV_NUMBER, INV_DATE

FROM CUSTOMER, INVOICE

WHERE CUSTOMER.CUS_NUM = INVOICE. CUS_NUM;

old style
syntax

SELECT CUS_NUM, CUS_LNAME,

INV_NUMBER, INV_DATE

FROM CUSTOMER NATURAL JOIN INVOICE;

old style
syntax

COP 4710: SQL Part 2 Page 48 Mark Llewellyn ©

Join With Using Clause

• A second way to express a join is through the
USING keyword. This query will return only the
rows with matching values in the column indicated
in the USING clause. The column listed in the
USING clause must appear in both tables.

• The syntax is:

SELECT column-list

FROM table1 JOIN table2 USING (common-column);

COP 4710: SQL Part 2 Page 49 Mark Llewellyn ©

Join With Using Clause (cont.)

• An example:

• As was the case with the natural join command, the
JOIN USING does not required the use of qualified
names (qualified table names). In fact, Oracle 9i
will return an error if you specify the table name in
the USING clause.

SELECT INV_NUMBER, P_CODE, P_DESCRIPT, LINE_UNITS,

LINE_PRICE

FROM INVOICE JOIN LINE USING (INV_NUMBER)

JOIN PRODUCT USING (P_CODE);

COP 4710: SQL Part 2 Page 50 Mark Llewellyn ©

Join On Clause

• Both the NATURAL JOIN and the JOIN USING commands
use common attribute names in joining tables.

• Another way to express a join when the tables have no
common attribute names is to use the JOIN ON operand.
This query will return only the rows that meet the indicated
condition. The join condition will typically include an
equality comparison expression of two columns. The
columns may or may not share the same name, but must
obviously have comparable data types.

• The syntax is:
SELECT column-list

FROM table1 JOIN table2 ON join-condition;

COP 4710: SQL Part 2 Page 51 Mark Llewellyn ©

Join On Clause (cont.)

• An example:

• Notice in the example query, that unlike the NATURAL
JOIN and the JOIN USING operation, the JOIN ON clause
requires the use of table qualifiers for the common attributes.
If you do not specify the table qualifier you will get a
“column ambiguously defined” error message.

• Keep in mind that the JOIN ON syntax allows you to
perform a join even when the tables do not share a common
attribute name.

SELECT INVOICE.INV_NUMBER, P_CODE, P_DESCRIPT, LINE_UNITS, LINE_PRICE

FROM INVOICE JOIN LINE ON INVOICE.INV_NUMBER = LINE.INV_NUMBER

JOIN PRODUCT ON LINE.P_CODE = PRODUCT.P_CODE;

COP 4710: SQL Part 2 Page 52 Mark Llewellyn ©

Join On Clause (cont.)

• For example, to general a list of all employees with
the manager’s name you can use the recursive query
shown below which utilizes the JOIN ON clause.

SELECT E.EMP_MGR, M.EMP_LNAME, E.EMP_NUM, E.EMP_LNAME

FROM EMP E JOIN EMP M ON E.EMP_MGR = M.EMP_NUM

ORDER BY E.EMP_MGR;

COP 4710: SQL Part 2 Page 53 Mark Llewellyn ©

Outer Joins
• We saw the forms for the LEFT OUTER JOIN and the

RIGHT OUTER JOIN in the previous set of notes.

• There is also a FULL OUTER JOIN operation in SQL. A
full outer join returns not only the rows matching the join
condition (that is, rows with matching values in the common
column(s)), but also all the rows with unmatched values in
either side table.

• The syntax of a full outer join is:

SELECT column-list

FROM table1 FULL [OUTER] JOIN table2 ON join-condition;

COP 4710: SQL Part 2 Page 54 Mark Llewellyn ©

Outer Joins (cont.)

• The following example will list the product code,
vendor code, and vendor name for all products and
include all the product rows (products without
matching vendors) and also all vendor rows
(vendors without matching products):

SELECT P_CODE, VENDOR.V_CODE, V_NAME

FROM VENDOR FULL OUTER JOIN PRODUCT

ON VENDOR.V_CODE = PRODUCT.V_CODE;

COP 4710: SQL Part 2 Page 55 Mark Llewellyn ©

Summary of SQL JOIN Operations

Returns only the rows that meet the join condition
indicated in the ON clause.

SELECT *
FROM T1 JOIN T2

ON T1.C1 = T2.C1

JOIN ON

Returns only the rows with matching values in the
columns indicated in the USING clause.

SELECT *
FROM T1 JOIN T2 USING
(C1)

JOIN USING

Returns only the rows with matching values in the
matching columns. The matching columns must
have the same names and similar data types.

SELECT *
FROM T1 NATURAL JOIN
T2

NATURAL
JOIN

Returns only the rows that meet the join condition in
the WHERE clause – old style. Only rows with
matching values are selected.

SELECT *
FROM T1, T2
WHERE T1.C1 = T2.C1

Old Style
JOIN

Inner

New style. Returns the Cartesian product of T1 and
T2.

SELECT *
FROM T1 CROSS JOIN T2;

Old style. Returns the Cartesian product of T1 and
T2

SELECT *
FROM T1, T2;

CROSS
JOIN

Cross

DescriptionSQL Syntax ExampleJoin TypeJoin
Classification

COP 4710: SQL Part 2 Page 56 Mark Llewellyn ©

Summary of SQL JOIN Operations (cont.)

Returns rows with matching values and includes all
rows from both tables (T1 and T2) with unmatched
values.

SELECT *
FROM T1 FULL OUTER
JOIN T2
ON T1.C1= T2.C1

FULL JOIN

Returns rows with matching values and includes all
rows from the right table (T2) with unmatched
values.

SELECT *
FROM T1 RIGHT OUTER
JOIN T2
ON T1.C1= T2.C1

RIGHT JOIN

Returns rows with matching values and includes all
rows from the left table (T1) with unmatched values.

SELECT *
FROM T1 LEFT OUTER
JOIN T2
ON T1.C1= T2.C1

LEFT JOINOuter

DescriptionSQL Syntax ExampleJoin TypeJoin
Classification

COP 4710: SQL Part 2 Page 57 Mark Llewellyn ©

Subqueries and Correlated Queries
• The use of joins allows a RDBMS go get information from

two or more tables. The data from the tables is processed
simultaneously.

• It is often necessary to process data based on other processed
data. Suppose, for example, that you want to generate a list
of vendors who provide products. (Recall that not all
vendors in the VENDOR table have provided products –
some of them are only potential vendors.)

• The following query will accomplish our task:
SELECT V_CODE, V_NAME

FROM VENDOR

WHERE V_CODE NOT IN (SELECT V_CODE FROM PRODUCT);

COP 4710: SQL Part 2 Page 58 Mark Llewellyn ©

Subqueries and Correlated Queries (cont.)

• A subquery is a query (SELECT statement) inside a query.

• A subquery is normally expressed inside parentheses.

• The first query in the SQL statement is known as the outer
query.

• The second query in the SQL statement is known as the inner
query.

• The inner query is executed first.

• The output of the inner query is used as the input for the
outer query.

• The entire SQL statement is sometimes referred to as a
nested query.

COP 4710: SQL Part 2 Page 59 Mark Llewellyn ©

Subqueries and Correlated Queries (cont.)

• A subquery can return:

1. One single value (one column and one row). This subquery can be
used anywhere a single value is expected. For example, in the right
side of a comparison expression.

2. A list of values (one column and multiple rows). This type of
subquery can be used anywhere a list of values is expected. For
example, when using the IN clause.

3. A virtual table (multi-column, multi-row set of values). This type of
subquery can be used anywhere a table is expected. For example, in
the FROM clause.

4. No value at all, i.e., NULL. In such cases, the output of the outer
query may result in an error or null empty set, depending on where
the subquery is used (in a comparison, an expression, or a table set).

COP 4710: SQL Part 2 Page 60 Mark Llewellyn ©

Correlated Queries
• A correlated query (really a subquery) is a subquery that contains a

reference to a table that also appears in the outer query.

• A correlated query has the following basic form:

• Notice that the subquery contains a reference to a column of table1,
even though the subquery’s FROM clause doesn’t mention table1.
Thus, query execution requires a look outside the subquery, and finds the
table reference in the outer query.

SELECT * FROM table1 WHERE col1 = ANY
(SELECT col1 FROM table2

WHERE table2.col2 = table1.col1);

COP 4710: SQL Part 2 Page 61 Mark Llewellyn ©

WHERE Subqueries
• The most common type of subquery uses an inner SELECT

subquery on the right hand side of a WHERE comparison
expression.

• For example, to find all products with a price greater than or
equal to the average product price, the following query
would be needed:

SELECT P_CODE, P_PRICE

FROM PRODUCT

WHERE P_PRICE >= (SELECT AVG(P_PRICE)

FROM PRODUCT);

COP 4710: SQL Part 2 Page 62 Mark Llewellyn ©

WHERE Subqueries (cont.)

• Subqueries can also be used in combination with joins.

• The query below lists all the customers that ordered the
product “Claw hammer”.

SELECT DISTINCT CUS_CODE, CUS_LNAME, CUYS_FNAME

FROM CUSTOMER JOIN INVOICE USING (CUS_CODE)

JOIN LINE USING (INV_NUMBER)

JOIN PRODUCT USING (P_CODE)

WHERE P_CODE = (SELECT P_CODE

FROM PRODUCT

WHERE P_DESCRIPT = “Claw hammer”);

COP 4710: SQL Part 2 Page 63 Mark Llewellyn ©

WHERE Subqueries (cont.)

• Notice that the previous query could have been written as:

• However, what would happen if two or more product
descriptions contain the string “Claw hammer”?

– You would get an error message because only a single
value is expected on the right hand side of this expression.

SELECT DISTINCT CUS_CODE, CUS_LNAME, CUYS_FNAME

FROM CUSTOMER JOIN INVOICE USING (CUS_CODE)

JOIN LINE USING (INV_NUMBER)

JOIN PRODUCT USING (P_CODE)

WHERE P_DESCRIPT = ‘Claw hammer’);

COP 4710: SQL Part 2 Page 64 Mark Llewellyn ©

IN Subqueries
• To handle the problem we just saw, the IN operand must be

used.

• The query below lists all the customers that ordered any kind
of hammer or saw.

SELECT DISTINCT CUS_CODE, CUS_LNAME, CUYS_FNAME

FROM CUSTOMER JOIN INVOICE USING (CUS_CODE)

JOIN LINE USING (INV_NUMBER)

JOIN PRODUCT USING (P_CODE)

WHERE P_CODE IN (SELECT P_CODE

FROM PRODUCT

WHERE P_DESCRIPT LIKE ‘%hammer%’

OR P_DESCRIPT LIKE ‘%saw%’);

COP 4710: SQL Part 2 Page 65 Mark Llewellyn ©

HAVING Subqueries
• It is also possible to use subqueries with a HAVING clause.

• Recall that the HAVING clause is used to restrict the output
of a GROUP BY query by applying a conditional criteria to
the grouped rows.

• For example, the following query will list all products with
the total quantity sold greater than the average quantity sold.

SELECT DISTINCT P_CODE, SUM(LINE_UNITS)

FROM LINE

GROUP BY P_CODE

HAVING SUM(LINE_UNITS) > (SELECT AVG(LINE_UNITS)

FROM LINE);

COP 4710: SQL Part 2 Page 66 Mark Llewellyn ©

Multi-row Subquery Operators: ANY and ALL
• The IN subquery uses an equality operator; that is, it only

selects those rows that match at least one of the values in the
list. What happens if you need to do an inequality
comparison of one value to a list of values?

• For example, suppose you want to know what products have
a product cost that is greater than all individual product costs
for products provided by vendors from Florida.

SELECT P_CODE, P_ONHAND*P_PRICE

FROM PRODUCT

WHERE P_ONHAND*P_PRICE > ALL (SELECT P_ONHAND*P_PRICE

FROM PRODUCT

WHERE V_CODE IN (SELECT V_CODE

FROM VENDOR

WHERE V_STATE= ‘FL’));

COP 4710: SQL Part 2 Page 67 Mark Llewellyn ©

FROM Subqueries
• In all of the cases of subqueries we’ve seen so far, the subquery was part

of a conditional expression and it always appeared on the right hand side
of an expression. This is the case for WHERE, HAVING, and IN
subqueries as well as for the ANY and ALL operators.

• Recall that the FROM clause specifies the table(s) from which the data
will be drawn. Because the output of a SELECT statement is another
table (or more precisely, a “virtual table”), you could use a SELECT
subquery in the FROM clause.

• For example, suppose that you want to know all customers who have
purchased products 13-Q2/P2 and 23109-HB. Since all product
purchases are stored in the LINE table, it is easy to find out who
purchased any given product just by searching the P_CODE attribute in
the LINE table. However, in this case, you want to know all customers
who purchased both, not just one.

• The query on the next page accomplishes this task.

COP 4710: SQL Part 2 Page 68 Mark Llewellyn ©

FROM Subqueries (cont.)

SELECT DISTINCT CUSTOMER.CUS_CODE , CUSTOMER.LNAME

FROM CUSTOMER, (SELECT INVOICE.CUS_CODE

FROM INVOICE NATURAL JOIN LINE

WHERE P_CODE = ’13-Q2/P2’) CP1,

(SELECT INVOICE.CUS_CODE

FROM INVOICE NATURAL JOIN LINE

WHERE P_CODE = ‘23109-HB’) CP2

WHERE CUSTOMER.CUS_CODE = CP1.CUS_CODE

AND CP1.CUS_CODE = CP2.CUS_CODE;

COP 4710: SQL Part 2 Page 69 Mark Llewellyn ©

Subqueries in MySQL
• The ability to handle subqueries like we’ve just examined

was not available in MySQL until version 4.1.

• If you are using a version of MySQL earlier than 4.1 you will
need to download the latest version (5.0) before you begin to
work on the next assignment which will involve the
execution of subqueries.

• There are a number of other enhancements that became
active with version 4.1 that are extremely useful and we will
examine a number of these over the coming days.

COP 4710: SQL Part 2 Page 70 Mark Llewellyn ©

Subqueries in MySQL (cont.)

• Subqueries are also useful in optimizing queries as they can
be used to eliminate more costly join operations.

• Consider the following general query:

• This query can be more efficiently expressed using
subqueries as:

SELECT DISTINCT table1.col1

FROM table1, table2

WHERE table1.col1 = table2.col1;

SELECT DISTINCT col1

FROM table1

WHERE table1.col1 IN (SELECT col1

FROM table2);

